철학
프로필 이미지
[레벨:30]id: 김동렬김동렬
read 7889 vote 0 2008.12.30 (15:23:23)

증명의 방법은 일의적 동시확정원리


증명을 위해서는 정의(定義)가 필요하다. 정의는 명제(命題)의 형태로 조직된다.
명제는 전제와 진술을 하나로 연결한 인과적 사슬구조로 조직된다.


여기서 전제(前提)가 예의 재현의 방법으로 인과율을 성립시키기 위하여 필요한
‘동일한 조건’이 되는 것이며, 진술(陳述)이 그 재현되어야 하는 내용이 된다. 곧
전제가 원인에 상당한다면 진술이 결과에 해당한다고 말할 수 있다.


여기서 전제와 진술의 양자를 잇는 것은 ‘=’이다. 이 ‘=’는 보통 ‘이다’로 표현된다.
예컨대
‘A이면 B이다’의 형태로 명제를 성립시킨다. 수학에서는 이를 계량적으로
구체화 하여
‘같다’로 표현한다. ‘A는 B와 같다’가 된다. 곧 'A=B'다.


여기에 인간의 이성이 개입하여 분별하는 바, 그 중심이 되는 것은 ‘=’이다.
이 등호의 의미는
‘양 변을 일의적(一義的)으로 동시에 확정한다’는데 있다.
예컨대 ‘1+1=2’라면 ‘=’의 좌변과 우변을 이루고 있는 각 항들, 곧 ‘1+1’과 ‘2’가
동시에 확정되는 것이다.


인간이 이성으로 판단한 바 그 진술된 사실을 인정하고 받아들이게 하는 모든 증명은
반드시 ‘=’를 가운데 두고 좌변과 우변을 이룬 각 항의 일의적(一義的) 동시확정 원리를
따르고 있으며 여기에 예외는 없다. 

List of Articles
No. 제목 글쓴이 날짜 조회
16 서구와 동양의 학문 김동렬 2009-01-02 7936
15 구조론과 논리학 김동렬 2009-01-02 8863
14 존재는 저울이다 김동렬 2009-01-02 5863
13 철학이란 무엇인가? 김동렬 2008-12-30 6559
12 그리스인처럼 사유하라 김동렬 2008-12-30 6126
11 선험적 인과와 경험적 환원 김동렬 2008-12-30 7642
10 구조는 집합과 원소 동시확정의 얼개 김동렬 2008-12-30 7356
9 반증과 거증의 원리 김동렬 2008-12-30 6949
» 증명의 방법은 일의적 동시확정원리 김동렬 2008-12-30 7889
7 근대과학의 버팀목은 환원과 재현의 논리 김동렬 2008-12-30 6905
6 과학의 기반 김동렬 2008-12-30 6706
5 구조론으로 증명한 4색문제 image 1 김동렬 2008-12-30 10944
4 철학하기의 출발 김동렬 2008-12-30 5708
3 구조론적 연역논리학 김동렬 2008-12-30 7974
2 구조론 훈련 김동렬 2008-12-30 6578
1 연역과 귀납 image 김동렬 2008-12-30 12153