토론실
프로필 이미지
[레벨:22]chow
read 3452 vote 0 2024.04.14 (14:23:04)

인간이 원하는 것은 관측자 입장에서 대상이 얼마나 변하는 지를 수치적으로 표현하는 것이다. 가령 자동차의 변화량을 알고 싶을 때 관측자는 고정된 상태에서 대상의 변화를 관측한다. 

그런데 가속도 상황은 자동차도 변화하고 관측자도 변화하는 상황이다. 이때 관측자를 붙잡아 둬야 하는데 그게 "lim->0"이다. 이것의 수학적 의미는 "량은 없고 위치는 있다"는 것이다.


나눗셈은 차원 '내' 연산으로 생각할 수 있다. 가령 같은 차원의 어떤 둘 사이의 비율을 구할 때 한쪽을 다른쪽으로 나누어 그 비율을 구한다. 이는 분모를 1로 만드는 과정이다.


그런데 미분은 차원 '간' 연산으로 생각할 수 있다. 이 상황에서 어떤 둘 사이의 비율을 구할 때는 분모를 0으로 만들어 다른 쪽의 량을 구한다. 수학에서는 0으로 나누면 안 된다고 하지만 미분에서는 lim->0이라는 희안한 회피술을 써서 0으로 나누고야 마는데, 이게 사실 차원간 연산을 표현하는 방법이기 때문이다. 


정리하면 사람들이 생각하는 연산이나 산수는 차원 안에서 일어나는 일이고 미분의 영역에 들어가면 차원 간에 일어나는 일을 다룬다는 차이가 있다는 것이다. 그러므로 어떤 수를 0으로 나누면 안 된다는 수학의 대원칙과 반대로 0으로 나누어야 한다는 것은 차원의 구분으로 통합적으로 설명할 수 있게 된다. 굳이 극한을 쓰지 않더라도. 극한을 쓰는 이유는 수학자 들이 차원을 쓰면 안 된다고 생각했기 때문이고.


"2 x 1 = 2"는 이게 같은 차원의 연산이라고 생각하면 맞고, 차원 간 연산이라고 생각하면 단위가 생략된 것이라 틀린 것이 된다. 그냥 이렇게 설명하면 되는데 전근대적인 수학자들이 개념이 없어서 뭔가 이상하다고 생각한 모양.


사실 학교 다닐 때 가장 이상했던 게 덧셈뺄셈에서의 1과 곱셈나눗셈에서의 1이 묘하게 통합이 안 된다는 것이다. 덧셈할 때 1은 어떤 작은 '량'을 의미하는데 곱셈할 때의 1은 존재 그 자체를 의미하는 것 같았기 때문. 2에 1을 곱해도 변화가 전혀 없다. 아니, 나만 이게 이상했냐고 ㅎㅎ. 연산 후에 변화가 없으려면 1이 아니라 0을 곱해야 하는 것 아닌가? 근데 수학에서 0을 곱하면 결과가 0이 되어버린다. 0으로 나누는 건 연산 불능이고. 여기에 뭔가가 있는 거지.


근데 가만히 생각해보면 수학에서 점은 크기가 없고 위치가 있다고 했거든. 량은 그렇다치고 위치에 대한 정의가 뭔가 부족한 게 수학. 왜냐하면 위치를 정의하려면 반드시 차원을 말해야 하기 때문. 포지션을 생각해보라고. 개인의 포지션을 설명하려면 반드시 집단이나 시스템에 대한 이야기를 해야 하는 것과 같은 것.


즉 수학은 양적 변화만 표현하려다 한계에 부딪혔고 미분과 차원으로 질적 변화를 표현하긴 했는데 받아들이지 못 하고 있다. 그래서 GPT가 수학 실력이 개판이다. 왜냐면 언어는 질적 변화의 집체인데 수학자들이 정의한 수학은 질적 변화를 다루지 않으려고 또아리를 튼 결과이기 때문. 그래서 수학 잘하는 놈과 언어 잘하는 놈이 통합이 잘 안 되는 거. 주변에 수학 잘하는 놈들을 자세히 보면 사실 산수를 잘하는 놈들임. 그거 가짜야 가짜.

List of Articles
No. 제목 글쓴이 날짜 조회
공지 구조론 매월 1만원 정기 후원 회원 모집 image 29 오리 2020-06-05 142112
» 나눗셈과 미분의 차이 chow 2024-04-14 3452
2142 미분의 비밀 image chow 2024-04-12 3209
2141 장안생활 격주 목요 모임 image 1 오리 2024-04-10 3463
2140 촛불동지께 image 수원나그네 2024-04-09 3456
2139 나는 오늘도 교사를 한다(문제행동 학생 이야기) 이상우 2024-04-04 3425
2138 상부구조와 동원력 SimplyRed 2024-04-02 3386
2137 장안생활 격주 목요 모임 오리 2024-03-27 3387
2136 장안생활 격주 목요 모임 image 오리 2024-03-13 3460
2135 [사진포함] 함께 걸을까요! 조선일보처벌시민걷기대회 image 수원나그네 2024-03-11 3438
2134 인간교육 systema 2024-03-01 3494
2133 장안생활 격주 목요 모임 image 오리 2024-02-28 3436
2132 달콤한 인생의 역설 3 chow 2024-02-24 3349
2131 시민의회를 소개합니다. 수원나그네 2024-02-19 3397
2130 장안생활 격주 목요 모임 image 3 오리 2024-02-14 3343
2129 장안생활 격주 목요 모임 image 오리 2024-01-31 2837
2128 좋은 축구란 무엇인가 chow 2024-01-21 3707
2127 장안생활 격주 목요 모임 image 오리 2024-01-17 3481
2126 장안생활 격주 목요 모임 image 오리 2024-01-03 3911
2125 장안생활 격주 목요 모임 오리 2023-12-20 4684
2124 세상의 초대 systema 2023-12-10 4933