토론실
프로필 이미지
[레벨:15]이금재.
read 1108 vote 0 2021.01.03 (01:12:06)

* 미분의 의미

모든 함수의 궁극적인 목적은 xy 사이에 성립하는 비율을 규정하는 것이다. 1차식 까지는 이 논리가 아무런 문제없이 성립하지만, 문제는 2차 이상의 함수식이다. y에 대한 x의 차수가 2차 이상이 되면 이때 xy의 비율을 어떻게 표현해야 하는지가 이슈가 된다. x를 제곱해서 그게 y와의 비율이 된다고? 뭔가 말이 꼬이기 시작한다.

 

이를 기하적으로 표현하자면 다음과 같다.

1) 1차식:

x y

 

2) 2차식: (2차식은 트리를 표현한 것이다.)

x y

x

 

우리가 알고 싶은 것은 x변화량과 y변화량 사이의 비율이다. 2차식이 되면 x2개가 되어 말하기가 곤란해진다. 그래서 x 하나를 고정시킨다는 개념을 떠올린다. 이때 고정이 독특한 컨셉이라고 생각할 필요는 없다. 우리가 일상에서 흔히 사용하기 때문이다.

 

우리는 어떤 사건(종속변수)에 여러 독립변수가 개입되어 있을 때, 추론을 쉽게 하고자 개별적인 독립변수 중 어느 하나를 고정시켜 종속변수(y)에 대한 각 독립변수(x)의 영향력을 산출하는 방법을 흔히 사용한다. 미분의 아이디어도 정확히 이와 같다. 다만 현대 수학의 표현법에는 변수를 고정“ 한다는 개념이 없기 때문에 굳이 limit x -> 0과 같은 방법으로 우회 표현할 뿐이다. "x는 0인데 그 0은 아니야."

 

예를 들어 y = x^2(제곱)이 있을 때, 이를 x에 대하여 미분하면 2x가 나오며, 이때 2x를 현대수학에서는 접선의 기울기라고 표현하는데, 달리 표현하자면 두 개의 x가 곱셈에 의해 y에 맞물려 있다가 된다.

 

이때 두 x 중 어느 하나를 고정시켜 다른 x에 딸리는데“, 저자가 굳이 고정시켜 딸린다는 어색한 표현을 사용하는 이유는 나중에 미분을 편미분과 통합하여 설명하기 위함이다. 참고로 편미분은 딸리지 않고 고정한다. 편미분 상황의 독립변수들은 쌍둥이가 아니기 때문이다(x1, x2..). 그래서 편미분은 다변수함수에서 사용된다.


* 참고: 깨봉수학

미분의 기하학적 표현: https://youtu.be/qcorAuRQJzA

편미분의 기하학적 표현: https://www.youtube.com/watch?v=GX7xxAFfPK4&t

 

한편 이러한 미분의 정의 때문에 일반적으로 미분의 기울기라는 개념은 2차식 이상에서만 성립이 된다. 물론 1차식도 미분할 수 있지만, 미분 결과가 상수가 나오므로 기울기로서의 의미가 없으므로 논외가 된다고 할 수 있겠다.

 

여담으로 1차식과 2차식 사이에는 단순히 x의 차수가 높다는 것 이상으로 논리의 레벨상 큰 차이가 있다. 1차식은 제3의 대상을 생략하고 단순히 xy 사이의 비율만을 표현한 것으로 볼 수 있고, 2차식은 y를 제3의 대상으로 정하고 쌍둥이 x를 대칭시켰을 때 x“y의 비율을 표현한 것으로 볼 수 있기 때문이다.

 

* 이게 구조론과 무슨 상관이 있냐고?

구조론은 현대 수학과 달리 그 기본이 트리(기하학)부터 시작한다. 물론 기하학에서 끝나지 않고 구조까지 더 복잡하다. 어떤 두 대상의 관계를 단순히 두 대상만으로 분석하려는 것이 y = ax와 같은 1차식이라면 두 대상이 종속하는 제3의 대상까지 함께 거론하는 게 기하학이다. 왠지 기하학이 아니라 2차식이 되어야 할 것 같지만, 현대 수학이 대수학을 기본하는 터라 차수가 높아진다고 하여 그것을 꼭 기하학으로 표현하지 않는 문제가 있다.

 

그리고 이는 아킬레스와 거북이를 비교 표현하고자 둘 만을 사용하는 표현상의 한계와 정확히 궤를 같이 한다. 아킬레스와 거북이는 이전에도 말했던 것과 같이 순환논리의 오류를 다루는 것이다. 그래서 갈릴레이와 뉴턴에 걸쳐 이 문제를 해결하려고 인간이 소위 제3의 대상인 시간을 발명했다. 시간과 함께 속도의 개념이 등장하는 것이다


잘 알려진 것과 같이 제논의 궤변은 속도의 개념이 도입되면 즉시 파훼된다. 제3의 기준을 넣었으므로. 그래서 법원에서는 대립하는 두 사람과 관계가 없는 제 3의 기준인 증인의 발언을 중시하는 것이다. 그래야 대치하는 둘의 순환논리 싸움이 끝나므로.

Drop here!
List of Articles
No. 제목 글쓴이 날짜 조회sort
공지 구조론 매월 1만원 정기 후원 회원 모집 image 27 오리 2020-06-05 23065
1752 사회주택과 중간권력의 창출[제민] 2 ahmoo 2019-06-10 978
1751 양자얽힘의 부정, 아인슈타인의 유령작용 3 현강 2020-08-22 978
1750 구조동일성과 리더의 문제. 1 systema 2019-06-20 984
1749 꿈꾸는 인류 image 2 챠우 2019-09-11 984
1748 에너지와 통제 1 systema 2018-11-14 986
1747 방향전환의 문제 systema 2019-06-02 989
1746 바깥으로 난 창을 열어라. 1 systema 2019-04-05 991
1745 축구하다 다투는 아이들 - 심은 축구하고 싶은 마음 이상우 2018-11-06 992
1744 '한반도 비핵화'와 관련된 두 개의 주제 수원나그네 2018-03-28 993
1743 생명로드42 - 6월 하순 동해안길 걷기 image 수원나그네 2019-06-11 998
1742 처음은 결합이다 13 현강 2020-08-02 998
1741 [미디어오늘] 한강하구, 국제기구도시를 상상한다 2 수원나그네 2018-11-24 999
1740 몬티홀 문제 재소환, 믿음의 문제. 1 이금재. 2020-04-20 1000
1739 미래예측에서 미래만들기로 3 수원나그네 2020-05-11 1001
1738 6월 21일(목) 오후2시 정동에서 실크로드 이야기가~ image 수원나그네 2018-06-18 1002
1737 골라 볼까요~ image 4 수원나그네 2020-06-06 1002
1736 땅값 집값 문제 13 - 토지임대정책 수원나그네 2018-01-24 1003
1735 게임의 복제 systema 2021-02-12 1004
1734 12월 1일(토) 걷기행사 다시 알려드립니다. image 2 수원나그네 2018-11-16 1006
1733 [미디어오늘] KS 오리엔트 특급으로 아시아를 누비자 수원나그네 2018-11-29 1006