토론실
프로필 이미지
[레벨:22]이금재.
read 2827 vote 0 2021.01.03 (01:12:06)

* 미분의 의미

모든 함수의 궁극적인 목적은 xy 사이에 성립하는 비율을 규정하는 것이다. 1차식 까지는 이 논리가 아무런 문제없이 성립하지만, 문제는 2차 이상의 함수식이다. y에 대한 x의 차수가 2차 이상이 되면 이때 xy의 비율을 어떻게 표현해야 하는지가 이슈가 된다. x를 제곱해서 그게 y와의 비율이 된다고? 뭔가 말이 꼬이기 시작한다.

 

이를 기하적으로 표현하자면 다음과 같다.

1) 1차식:

x y

 

2) 2차식: (2차식은 트리를 표현한 것이다.)

x y

x

 

우리가 알고 싶은 것은 x변화량과 y변화량 사이의 비율이다. 2차식이 되면 x2개가 되어 말하기가 곤란해진다. 그래서 x 하나를 고정시킨다는 개념을 떠올린다. 이때 고정이 독특한 컨셉이라고 생각할 필요는 없다. 우리가 일상에서 흔히 사용하기 때문이다.

 

우리는 어떤 사건(종속변수)에 여러 독립변수가 개입되어 있을 때, 추론을 쉽게 하고자 개별적인 독립변수 중 어느 하나를 고정시켜 종속변수(y)에 대한 각 독립변수(x)의 영향력을 산출하는 방법을 흔히 사용한다. 미분의 아이디어도 정확히 이와 같다. 다만 현대 수학의 표현법에는 변수를 고정“ 한다는 개념이 없기 때문에 굳이 limit x -> 0과 같은 방법으로 우회 표현할 뿐이다. "x는 0인데 그 0은 아니야."

 

예를 들어 y = x^2(제곱)이 있을 때, 이를 x에 대하여 미분하면 2x가 나오며, 이때 2x를 현대수학에서는 접선의 기울기라고 표현하는데, 달리 표현하자면 두 개의 x가 곱셈에 의해 y에 맞물려 있다가 된다.

 

이때 두 x 중 어느 하나를 고정시켜 다른 x에 딸리는데“, 저자가 굳이 고정시켜 딸린다는 어색한 표현을 사용하는 이유는 나중에 미분을 편미분과 통합하여 설명하기 위함이다. 참고로 편미분은 딸리지 않고 고정한다. 편미분 상황의 독립변수들은 쌍둥이가 아니기 때문이다(x1, x2..). 그래서 편미분은 다변수함수에서 사용된다.


* 참고: 깨봉수학

미분의 기하학적 표현: https://youtu.be/qcorAuRQJzA

편미분의 기하학적 표현: https://www.youtube.com/watch?v=GX7xxAFfPK4&t

 

한편 이러한 미분의 정의 때문에 일반적으로 미분의 기울기라는 개념은 2차식 이상에서만 성립이 된다. 물론 1차식도 미분할 수 있지만, 미분 결과가 상수가 나오므로 기울기로서의 의미가 없으므로 논외가 된다고 할 수 있겠다.

 

여담으로 1차식과 2차식 사이에는 단순히 x의 차수가 높다는 것 이상으로 논리의 레벨상 큰 차이가 있다. 1차식은 제3의 대상을 생략하고 단순히 xy 사이의 비율만을 표현한 것으로 볼 수 있고, 2차식은 y를 제3의 대상으로 정하고 쌍둥이 x를 대칭시켰을 때 x“y의 비율을 표현한 것으로 볼 수 있기 때문이다.

 

* 이게 구조론과 무슨 상관이 있냐고?

구조론은 현대 수학과 달리 그 기본이 트리(기하학)부터 시작한다. 물론 기하학에서 끝나지 않고 구조까지 더 복잡하다. 어떤 두 대상의 관계를 단순히 두 대상만으로 분석하려는 것이 y = ax와 같은 1차식이라면 두 대상이 종속하는 제3의 대상까지 함께 거론하는 게 기하학이다. 왠지 기하학이 아니라 2차식이 되어야 할 것 같지만, 현대 수학이 대수학을 기본하는 터라 차수가 높아진다고 하여 그것을 꼭 기하학으로 표현하지 않는 문제가 있다.

 

그리고 이는 아킬레스와 거북이를 비교 표현하고자 둘 만을 사용하는 표현상의 한계와 정확히 궤를 같이 한다. 아킬레스와 거북이는 이전에도 말했던 것과 같이 순환논리의 오류를 다루는 것이다. 그래서 갈릴레이와 뉴턴에 걸쳐 이 문제를 해결하려고 인간이 소위 제3의 대상인 시간을 발명했다. 시간과 함께 속도의 개념이 등장하는 것이다


잘 알려진 것과 같이 제논의 궤변은 속도의 개념이 도입되면 즉시 파훼된다. 제3의 기준을 넣었으므로. 그래서 법원에서는 대립하는 두 사람과 관계가 없는 제 3의 기준인 증인의 발언을 중시하는 것이다. 그래야 대치하는 둘의 순환논리 싸움이 끝나므로.

Drop here!
List of Articles
No. 제목 글쓴이 날짜 조회
공지 구조론 매월 1만원 정기 후원 회원 모집 image 29 오리 2020-06-05 131693
1879 죄수의 딜레마에서 개인에게 주어진 두가지 선택지와, 또다른 선택지 image mowl 2021-11-02 3024
1878 테슬라의 실패 이금재. 2021-11-02 3170
1877 우리가 달의 한쪽 면만 보는 이유 7 이금재. 2021-10-28 3910
1876 목요 토론모임 공지 image 2 김동렬 2021-10-27 3199
1875 노션을 이용한 구조론 백과사전화 3 mowl 2021-10-25 3307
1874 이번 주 목요 모임 공지 image 7 김동렬 2021-10-20 3836
1873 이어져야 끝난다 1 이금재. 2021-10-11 3704
1872 착한 사람 되려다가 만만한 사람되고 2 이상우 2021-10-08 4222
1871 진화와 복제의 원리 1 이금재. 2021-10-08 3438
1870 중립국의 조건 2 이금재. 2021-10-08 3573
1869 < '소설'이라 이름 붙이고 직감이라고 읽어야 하리> 3 아란도 2021-10-07 3279
1868 버스 노선의 운명 레인3 2021-10-06 3114
1867 같은 상황 다른 결말 이금재. 2021-10-05 3161
1866 오징어게임과 주식시장 - 고수가 이긴다 2 레인3 2021-10-04 3289
1865 예술은 쉽다 1 이금재. 2021-09-30 3581
1864 오징어게임은 21세기 한미일 문학의 총결산 2 이금재. 2021-09-28 3849
1863 사건을 이해해야 전략을 이해한다. systema 2021-09-26 3355
1862 표절의 기준 - 오징어게임 이금재. 2021-09-26 3403
1861 부동산은 대끼리일까 레인3 2021-09-24 3488
1860 아인슈타인의 시계 이금재. 2021-09-24 3184